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Magnetohydrodynamic lubrication flow between 
parallel rotating disks 

By W. F. HUGHES AND R. A. ELCO 
Cmnegie Institute of Technology, Pittsburgh 

(Received 17 November 1961) 

The motion of an electrically conducting, incompressible, viscous fluid in the 
presence of a magnetic field is analyzed for flow between two parallel disks, Gne 
of which rotates at a constant angular velocity. The specific application to liquid 
metal lubrication in thrust bearings is considered. The two field configurations 
discussed are: an axial magnetic field with a radial current and a radial magnetic 
field with an axial current. It is shown that the load capacity of the bearing is 
dependent on the MHD interactions in the fluid and that the frictional torque 
on the rotor can be made zero for both field configurations by supplying electrical 
energy through the electrodes to the fluid. 

1. Introduction 
The two-dimensional flow of a conducting incompressible fluid in an idealized 

thrust bearing with applied magnetic and electric fields is of interest for applica- 
tion to high-temperature bearings using liquid-metal lubricants. The interaction 
of the flowing liquid-metal lubricant with the applied magnetic field can be used 
to increase the total load which the rotor can support and reduce the viscous 
drag on the rotor. Because of the cylindrical geometry of the thrust bearing 
both axial and radial applied magnetic field configurations are possible. 

The bearing geometry considered here consists of two plane parallel disks, one 
of which, the rotor, rotates at  an angular speed o with respect to the second 
disk or stator. As is usual in a pressurized thrust bearing the stator has a 
recessed region. However, for simplicity of analysis, the electrode geometries 
considered here are such that the flow in the recess is not affected by the applied 
fields. The results obtained could, however, be easily extended to include such 
effects. 

For the case of an axially applied magnetic field the electrodes are concentric 
cylinders as shown in figure 1. It is assumed that these electrodes are ideal 
conductors and porous to the fluid flow. Physically, these electrodes represent 
equipotential surfaces at  the step of the recess and exit radius of the bearing. This 
idealization is permissible because the separation between the rotor and stator 
is much less than the recess depth. The actual electrodes in a real bearing would 
probably be located in the recess and at the outer radius of the stator. The stator 
and rotor are assumed to be non-magnetic insulators and the magnetic field 
extends only over the region between the electrodes. 
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In  the radial-field geometry the electrodes are the surfaces of the rotor and 
stator as shown in figure 2. Here it is assumed that the electrodes extend from 
r = u to r = b and that end effects and the current density in the recess can be 
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FIGURE 1. The axial-field bearing. 
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FIGURE 2. The radial-field bearing. 

neglected. Again the electrodes are assumed to be ideal conductors and non- 
magnetic. The radial magnetic field can be obtained in several ways. One radial- 
field magnet structure is a system of two opposing (opposite exciting currents) 
magnet coils, one around the stator and the other around the rotor, which are 
symmetrical about the plane z = 0 and which are located on the same axis as the 
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bearing. The radial magnetic field a t  z = 0 is approximately a linearly increasing 
function of radius and for small film thicknesses the axial component, B,, is 
negligible. Another structure which could be used is a coaxial pole magnet with 
the inner pole embedded in the stator (with the radius of the centre pole less than 
the recess radius) and the outer pole surrounding the exit region of the bearing. 
A radial spider with the coils joins the two pole pieces under the stator. For this 
geometry the radial magnetic field varies approximately as l/r with an axial 
component only in the recess region near the centre poie piece. It will be seen that 
the radial-field bearing is not so practical as the former type because of the rela- 
tively low pressurization possible. 

The flow is considered to be steady-state, incompressible and viscous with 
constant conductivity (T and viscosity p. The inertia of the fluid is assumed to 
be small compared to the viscous forces, which is a valid approximation for the 
flow considered here (Osterle & Hughes 1958). 

2. Basic equations 

written (using RMKS units) as 
Maxwell’s equations and the magnetic-field constitutive equation can be 

V x E = O ,  V x H = J ,  V-B=O,  V .J=O,  B=,u,K,H (1) 

and Ohm’s law is J = g(E.+ V x B), (2) 

where J is the current density, E the electric field, H the magnetic field, po the 
permeability of free space, K, the relative permeability and V the fluid velocity. 
Because the electric field is irrotational (V x E = 0) a scalar potential q5 can be 
defined as - V$ = E. 

The equation of motion, neglecting inertia and electric forces and remembering 
that the constitutive equations for the magnetic field can be written in any 
frame of reference for the MHD approximation, can be expressed in vector form 
as 

(4) - v P + ~ v +  J X  B - ~ ~ , H ~ V K , + ~ , U , ~ ( H ~ ~ ~ K , ~ ~ ~ )  = 0,  

where P and p are the pressure and fluid density, respectively. Since the liquid 
metals are generally non-magnetic the term involving V K ,  and the magneto- 
striction term are neglected. The electric forces are much smaller than the mag- 
netic forces and are neglected throughout. The magnetic fluid could be analyzed 
without additional difficulty. The V K ,  term gives rise to a pressure discontinuity 
at  the fluid interfaces and the magnetostriction term is negligible in the axial- 
field case except at the fluid interfaces where it contributes to the pressure dis- 
continuity. I n  the radial-field case the magnetostriction term affects the pressure 
discontinuity at the fluid interfaces and also has a finite value throughout the 
fluid. This value can be easily calculated as a function of radius and does not 
unduly complicate the equation of motion. 
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Under the present assumptions then, the components of the equation of motion, 
assuming cylindrical symmetry and lubrication flow (h  < b) ,  are 

r :  

0: 

2: 

where u and v are the radial and tangential velocities, respectively. The continuity 
eauation can be written as 

where Q is the flow rate and h is the half height of the fluid film between the stator 
and rotor (for a < r < b ) .  

3. Axial magnetic field 
Referring to figure 1, the external magnetic field B, is applied axially in the 

z-direction, and the electrodes are located at  r = b and r = a. These electrodes 
are assumed to be porous and ideal conductors. The induced magnetic fields B,, 
B,, and induced variations in B, are assumed to be very small compared to B,. 
From V x B = p, J, an order of magnitude study shows that B, is of order 
p,hbwB, and B, of order ,uohuB,. It is only for physically unrealizable velocities 
of the order of 109m/sec that the induced fields would become comparable to B,. 
Because the induced magnetic fields will be small, only the terms in the equation 
of motion containing B, need be considered and the equations then become 

r :  

e: 

2: 

( 7 )  

where the z-variation in pressure is negligible. 
From V x E = 0 and the assumption of cylindrical symmetry, it follows that 

1 3  
a2 r ar 
_ -  8% - 0, -- (rE,) = 0. 

Hence E, must be of the form l / r ,  but, since E, is zero a t  the inner and outer 
electrodes, E, must be zero everywhere. Substituting for Je from equation ( 2 )  
into the r-part of equation (7)  results in the following differential equation for the 
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where aP/& is a function of r only. Using the boundary conditions that u = 0 at 
x = h, the solution to equation (9) is 

h2 aP. cosh Mzlh = ~- 
M2p ar ( coshM 

where M is the Hartmann number (crh2BBg/,u)&. 
From the continuity equation (6) the flow rate is 

4nrh3 aP 
p M 3  ar 

Q=--  (tanh M - M ) .  

Then using the condition that P = P, at r = b and P = Po at r = a, integration of 
equation (1 1) over r gives the flow rate 

Q = r" In (bia) ) = 3Q0 (M-G:h ") , (12) 

where Qo is the flow rate for zero Hartmann number (no applied field) and the 
nressure distribution is 

(13) 

The radial velocity u is then determined from (10) and (13) as 

For a fixed (Po - P,), the pressure distribution given by (13) is the same as that 
obtained when no fields are present and it is evident that only the flow rate 
and radial velocity profile are affected by the application of an axial magnetic 
field. In  the recess region, u can be neglected and the recess is essentially at  a 
constant pressure Po which is the pump supply pressure. The fluid .flow rate is 
decreased by the application of the magnetic field which implies that in order to 
maintain a given pressure Po or a given pressure load on the rotor, less pump work 
is necessary. The normalized flow rate as a function of the Hartmann number M, 
for a fixed pressure difference (Po - P,)7 is shown in figure 3. Conversely, if the 
flow rate is held constant, the recess pressure and load increase with increasing 
M as shown in figure 4. The relations for u, P, and Q are independent of the ex- 
ternal electrical characteristics. 

The total pressure load W of the bearing can be expressed as 

Substituting for Pand integrating gives 

(16) 
n( b2 - a') (Po - P,) &(b2 - a') p M 3  Wo M3 

-~ - ________ - - - 
2 In (b/a)  8 h3 ( M  - tanh M )  3 ( M  - tanh M )  ' W =  

where Wo is defined by the above equation. 
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FIGURE 3. Plot of the normalized flow rate 21s Hartmann number M for the axial-field 
geometry, the load W (and pressure difference Po - P,) being held constant. 
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FIGURE 4. Plot of the normalized load W /  Wo as a function of the Hartmann number M 
for the axial-field geometry, the flow rate Q being held constant. 
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The tangential velocity v can now be found. From equation (3) the potential 
between the electrodes is defined as 

J a  

where q5t is the terminal voltage, a constant. Then, because J ,  is of order rvB, or 
cruBo, it is negligible compared to J ,  which is of order avB,. From the equations 
V x  E = 0 and V*J = 0, we find that 

aE, aE, 
r ar a Z  ar 

- 0. - - (rJ , )+% i a  a J, = 0, - 

Since h < b, the first equation is not useful even though J ,  4 J,. However E, 
is of order J,/cr and E, is of order J,/cr so that E, 9 E,. The maximum change in 
E, over r is of order E, and hence the maximum change in E, over x is of order 
hE,/b which is negligible compared to E, and it may be concluded that E, is 
essentially a function of r only. 

Substituting for J ,  into the 8-part of equation ( 5 ) ,  the equation for the tangen- 
tial velocity becomes 

a Z v  

a2z 0 = r” -- c(E,+ vB,) B, 

which can be integrated immediately, using the boundary conditions v = 0 a t  
z = - h and v = rw at z = h, and remembering that E, is a function of r only, to 

) rw (cosh (Mzlh) -’ f coshM sinhM 
+ 

give 

To determine E,.(r), the expression for v can be combined with Ohm’s law and 
the radial current density integrated over the surface of the cylinder whose area 
is 4nrh to find the total current as 

I = Slh 2nrcr(E,+ vB,) dz. 

The radial electric field is, in terms of the total current, 

I N  1 
E, = - - frrwB,,. 

4ncrh tanh M r 

Then the tangential velocity is, in terms of I, 

I 1 cosh(Mz/h) - 1  ) +ire ( 1+--.  sinh(Mz/h)) V =  
4n(oy5)4 tanh M ( cash M sinh M 

From equations (17) and (22), the terminal voltage q ! ~ ~  is 

- I M  
In (bla) + BwB, (b2 - a2), ’’ = 4ncrh tanh M 

so that the open circuit voltage q5t o.c. is 

41 0.C. = tWB,(b2 - a2), 

(23) 
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and the short circuit current 18.c. is 
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wB,nah(b2 - a2) tanh M 
M In @/a) ( 2 6 )  I8.C. = 

Then the internal resistance, which is the ratio of to Is.c., becomes 

M In @/a)  R. = 
a 4ncrhtanhM‘ (27) 

In  the recess region (a  > r > 0), the current density is very small and the ap- 
plied magnetic field is essentially zero. Therefore the tangential component of 
the equation of motion in the recess is 

pa2Vlaz2  = 0, (28) 

which has the solution (for boundary conditions u = 0 at z = - L and v = rw at 
z = h) 

where L is the depth of the recess from the surface of the stator plate. 
The total drag torque on the rotor can now be computed from 

Using equations (23) and (as), the drag torque T is 

pwnu4 IM(b2 - a2)  ,u 3 pL2C1wn(b4 - a 4 )  
2(2h+L) 4h (G) + 4h coth M ,  (31) T = + 

where the first term represents the torque in the region of the recess. From 
equation (31) it can be seen that in order to make the drag go to zero the current I 
must be negative. This is confirmed by simple energy considerations because, 
when I is negative, power is supplied t o  the bearing from an external source. 
This power constitutes the power which is dissipated in the fluid as Joule heat 
and the power to provide the pumping action on the fluid. The value of I’ for 
zero torque, T = 0, is 

-7rw(up)* [aha4+ (Slit-L) M(b4-a4)cothM] 
(2h + L) (b2 - a2) M (32) I’ = ~ _ _ _ _  

If b a this current can be approximated by 

I’ = - n ~ ( c ~ , / ~ ) * b ~ c o t h M  (33) 

and for large values of the Hartmann number the current approaches the value 

The radial current density in the fluid can now be found from Ohm’s law and 
- nWbycrp)*. 

equation (23) which give 

IM 1 cosh (pz /h)  
4nhr sinhM 2h sinh M . 

(o-p)* Mru sinh (Mzjh)  J = ~- ---+ ~ ~~~~ (34) 
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Then from V J = 0, the axial current density J ,  is 

Since E, is zero, Je is simply - ruB, which, like J,, is independent of the terminal 
(electrical) characteristics of the bearing. J ,  and Je go to zero at  the surface of the 
rotor and stator plates so that circulating currents are set up within the fluid. 
The above functions for the current densities completely determine these 
circulating currents. 

4. Radial magnetic field 
The geometry for the radially applied magnetic field bearing is shown in figure 2 

where the electrodes are assumed to be ideal conductors located at  z = k h. 
The applied radial field is assumed to be a function of r only. By the same argu- 
ment as in $ 3  the induced magnetic fields are neglected and the tangential com- 
ponent of the equation of motion becomes 

The exact form of B,(r) is not yet specified in order to preserve as much generality 
as possible. Actually, of course, the only function B, that is not a function of z 
must be of the form l / r .  However, since the plate spacing is small other r varia- 
tions can be constructed that have only a negligible value of B, over the fluid. 

Using again an order of magnitude approximation, the equation V .  J = 0 
implies that J ,  is a function of r only. This conclusion is reached because J ,  
is of order vvB, and J ,  is of order evB, which gives J ,  9 J,. Then from the relative 
magnitudes of the derivatives aJ,/ar and aJ,/az in the equation V - J = 0 it can be 
seen by an argument similar to that for the electric fields in 9 3 that J ,  is essentially 
a function of r only. 

Equation ( 3 6 )  can be integrated directly, using the boundary conditions on v, 
to give 

Substituting the result for v into Ohm's law gives 

J, = c[EZ - (1/2p) J ,  BF(h2 - z2 )  - +rwB,( 1 + z/h)].  (38) 

Then solving the above equation for E, and integrating over z, the current density 
J ,  can be determined as a function of the magnetic field strength and the terminal 
voltage q5t which is now defined as 

q5t = -J: E,dz. 
h 

(39) 

There results then 
- 3ep(4,  + rwhB,) 

6hp + 223: h3c 
J,=- 
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The total current I can then be related to the terminal voltage $t by evaluating 
the integral 

for a given B,. 
If  the current density in the region of the recess is zero (assuming the annular 

type of electrode which does not extend over the recess) the radial equation of 
motion and velocity are the same as those given by equations (28) and (29). 
The total frictional drag on the rotor can then be evaluated by performing the 
integration indicated by equation (30) for a given function B,. 

The tangential velocity profile and drag will now be found for an axial magnetic 
field of the form 

I = / ;  2 n 4 r d r  (41) 

(42 )  Bob 
r '  

B =-- 

which is easily obtainable in practice. B, is the value of the field at  r = b.  Then 
from equation (40) the axial current density is 

( 4 3 )  
- 30;ur2 [ $t + wB, bh ] J,=- 

2h 3pr2 + CTBE b2h2 

and from ( 4 1 )  the total current is 

I =- ($l+wBobh) [b2-a2-- uBi b2h2 
3pb2 + CBE bzhz)] 

ln ( ( 4 4 )  3pa2 + C T B ~  b2h2 ' 

- Crn 

2h 3P 

The tangential velocity v then, from equation ( 3 7 ) ,  is 

Evaluating av/az at x = h and using equation (30), the drag torque becomes 

Setting T = 0, the required current for zero drag is 

(47 )  

If b 9 a, I' can be approximated by 

I' M pnwb3/4B,h2. ( 4 8 )  

It is seen that the current for zero drag is linearly related to the angular velocity 
of the rotor. 

The radial velocity and pressure distribution can now be determined. Referring 
to the radial equation of motion (5) it is evident that the pressure gradient will be 
affected primarily by the interaction of J ,  and B, since the other body-force term, 
JOB,, is negligible. Then the r-component in equation ( 5 )  becomes 



Magnetohydrodynamic lubrication flow 31 

However, from the equation V x B = ,uo J it  can be seen that the magnitude of 
B, is of order poJ,, where ,uo is the magnetic permeability, and therefore the 
magnitude of the J ,  B, force will be several orders of magnitude smaller than the 
pressure or viscous forces. This observation indicates that the pressurization due 
to the electromagnetic body force will be essentially negligible for this radial- 
field geometry except for very large values of J ,  which may be difficult to obtain 
in practice. Hence the pressure distribution and load are essentially unaffected 
by the MHD effects, but for the sake of completeness they are considered in this 
analysis. 

From the equation V x B = p o J ,  the tangential component of the magnetic 

where J ,  is determined from equation (40). Now, since J,B, is only a function of 
r and is determined explicitly for any given function Br, equation (49) can be 
integrated with the boundary conditions u = 0 a t  z = f h to give 

From continuity (equation (6)),  the flow rate is 

Integrating (52) for P, using the boundary condition that P = P, a t  r = b and 
P= Po a t  r = a, gives 

Then u is given by 

2pr In (b/a)  
U =  (55) 

The first term of equation (54) is the usual pressure distribution and the second 
and third terms represent a ‘pinch ’ pressure that can pressurize the bearing even 
in the absence of flow (no external pump). However, as was pointed out earlier 
this pressure term is very small except for extremely large values of J,. Physically 
this electromagnetic pressure term is the so-called ‘pinch ’ pressure. 

5. Conclusions 
An analysis has been presented for two magnetic field geometries which are 

most easily obtainable in practice. For the case of an applied axial field the 
pressure distribution is identical with that obtained without a magnetic field. 
However, the flow rate Q is a function of the Hartmann number and for a fixed 
pressure difference across the bearing (equivalent to a fixed load) Q decreases 
with increasing Hartmann number (figure 3). The bearing is then essentially 
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pressurized because a constant inlet pressure Po can be maintained with less 
pressurizing pump work as the Hartmann number is increased. However, as Q 
approaches zero, the pressure becomes zero for any finite value of the Hartmann 
number. It should also be pointed out that the flow rate as a function of the 
Hartmann number is independent of the electrical loading of the electrodes. 

The pressure distribution in the radial-field bearing on the other hand can be 
directly affected by the electromagnetic effects, even when the flow rate is zero. 
However, this pressurization is negligible from a practical point of view because 
it is of the order of magnitude of the ‘pinch’ pressure which requires extremely 
high currents to achieve useful pressure. Unlike the axial-field case this pressure 
is dependent on the electrical loading characteristics of the electrodes. 

The viscous frictional drag torque on the rotor can be made zero for both 
geometries by supplying electrical power from an external source so that the 
fluid is pumped along with the rotor. For both cases the current required to main- 
tain zero drag is a linear function of the rotor angular velocity. If the power 
input is increased above that required to maintain zero drag the device acts as a 
motor and energy is supplied to the rotor. When an electrical load is connected to 
the electrodes energy can be removed and the bearing acts as a generator. For 
open circuit conditions, I = 0, the drag on the rotor is greater than the correspond- 
ing drag for the non-MHD bearing (for a given pressure load) since the Joule heat- 
ing losses must be supplied by the mechanical power through the rotor. The 
efficiency of the device in any particular mode of operation can be found by 
considering the two dissipation effects, Joule heating and viscous shear. 
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